Dwa pierwiastki E i X tworzą jony E+ i X– o takiej samej konfiguracji elektronowej 1s22s22p63s23p6 (stan podstawowy). W atomie jednego z trwałych izotopów pierwiastka E liczba nukleonów jest o 20 większa od liczby protonów.
Uzupełnij poniższy schemat. Wpisz w odpowiednie pola symbol pierwiastka E, jego liczbę atomową oraz liczbę masową opisanego izotopu.
Liczba atomowa pierwiastka X jest dwa razy większa od liczby atomowej rutenu (Ru). Liczba neutronów w jądrze pewnego izotopu pierwiastka X jest równa liczbie masowej izotopu baru, w którego jądrze znajduje się 81 neutronów. Z tego izotopu pierwiastka X w ciągu rozpadów α i β– powstaje nietrwały izotop ołowiu zawierający w jądrze 127 neutronów. Ten izotop ulega następnie przemianie w trwały izotop 209Bi.
Uzupełnij tabelę. Wpisz wartość liczby atomowej i symbol pierwiastka X oraz wartość liczby masowej opisanego izotopu pierwiastka X.
Dwa pierwiastki E i X tworzą jony E+ i X– o takiej samej konfiguracji elektronowej 1s22s22p63s23p6 (stan podstawowy). W atomie jednego z trwałych izotopów pierwiastka E liczba nukleonów jest o 20 większa od liczby protonów.
Napisz fragment konfiguracji elektronowej atomu X w stanie podstawowym opisujący rozmieszczenie elektronów walencyjnych na orbitalach. Zastosuj graficzny (klatkowy) zapis konfiguracji elektronowej. W zapisie uwzględnij numer powłoki i symbole podpowłok.
Liczba atomowa pierwiastka X jest dwa razy większa od liczby atomowej rutenu (Ru). Liczba neutronów w jądrze pewnego izotopu pierwiastka X jest równa liczbie masowej izotopu baru, w którego jądrze znajduje się 81 neutronów. Z tego izotopu pierwiastka X w ciągu rozpadów α i β– powstaje nietrwały izotop ołowiu zawierający w jądrze 127 neutronów. Ten izotop ulega następnie przemianie w trwały izotop 209Bi.
Uzupełnij tabelę. Wpisz liczbę przemian α i β– zachodzących podczas powstawania izotopu ołowiu z opisanego izotopu pierwiastka X.
Dwa pierwiastki E i X tworzą jony E+ i X– o takiej samej konfiguracji elektronowej 1s22s22p63s23p6 (stan podstawowy). W atomie jednego z trwałych izotopów pierwiastka E liczba nukleonów jest o 20 większa od liczby protonów.
Pierwiastek E przyjmuje w związkach chemicznych jeden stopień utlenienia, a pierwiastek X tworzy związki, w których występuje na różnych stopniach utlenienia.
Określ charakter chemiczny (kwasowy, zasadowy, amfoteryczny, obojętny) tlenku pierwiastka E. Napisz wzór sumaryczny tlenku pierwiastka X, w którym ten pierwiastek przyjmuje najwyższy stopień utlenienia. Charakter chemiczny tlenku pierwiastka E: Wzór sumaryczny tlenku pierwiastka X na najwyższym stopniu utlenienia:
Liczba atomowa pierwiastka X jest dwa razy większa od liczby atomowej rutenu (Ru). Liczba neutronów w jądrze pewnego izotopu pierwiastka X jest równa liczbie masowej izotopu baru, w którego jądrze znajduje się 81 neutronów. Z tego izotopu pierwiastka X w ciągu rozpadów α i β– powstaje nietrwały izotop ołowiu zawierający w jądrze 127 neutronów. Ten izotop ulega następnie przemianie w trwały izotop 209Bi.
Napisz równanie – opisanej w informacji – przemiany izotopu ołowiu w izotop bizmutu. Uzupełnij wszystkie pola w poniższym schemacie.
Gal tworzy trihalogenki, np. chlorek galu(III). W fazie stałej chlorek galu(III) występuje głównie w postaci dimerów, a w fazie gazowej – jako mieszanina dimerów i monomerów. Monomer chlorku galu(III) jest płaską cząsteczką, w której wszystkie atomy chloru są równocenne. Model dimeru przedstawiono na rysunku.
Na podstawie: CRC Handbook of Chemistry and Physics 97th Edition, CRC Press 2017.
Narysuj wzór elektronowy monomeru chlorku galu(III). Zaznacz kreskami wiążące i wolne pary elektronowe.
Gal tworzy trihalogenki, np. chlorek galu(III). W fazie stałej chlorek galu(III) występuje głównie w postaci dimerów, a w fazie gazowej – jako mieszanina dimerów i monomerów. Monomer chlorku galu(III) jest płaską cząsteczką, w której wszystkie atomy chloru są równocenne. Model dimeru przedstawiono na rysunku.
Na podstawie: CRC Handbook of Chemistry and Physics 97th Edition, CRC Press 2017.
Narysuj wzór elektronowy monomeru chlorku galu(III). Zaznacz kreskami wiążące i wolne pary elektronowe.
Gal tworzy trihalogenki, np. chlorek galu(III). W fazie stałej chlorek galu(III) występuje głównie w postaci dimerów, a w fazie gazowej – jako mieszanina dimerów i monomerów. Monomer chlorku galu(III) jest płaską cząsteczką, w której wszystkie atomy chloru są równocenne. Model dimeru przedstawiono na rysunku.
Na podstawie: CRC Handbook of Chemistry and Physics 97th Edition, CRC Press 2017.
Uzupełnij tabelę. Napisz, jaki typ hybrydyzacji (sp, sp2 albo sp3) przypisuje się orbitalom walencyjnym atomu galu w monomerze oraz w dimerze chlorku galu(III).
Gal tworzy trihalogenki, np. chlorek galu(III). W fazie stałej chlorek galu(III) występuje głównie w postaci dimerów, a w fazie gazowej – jako mieszanina dimerów i monomerów. Monomer chlorku galu(III) jest płaską cząsteczką, w której wszystkie atomy chloru są równocenne. Model dimeru przedstawiono na rysunku.
Na podstawie: CRC Handbook of Chemistry and Physics 97th Edition, CRC Press 2017.
Uzupełnij tabelę. Napisz, jaki typ hybrydyzacji (sp, sp2 albo sp3 ) przypisuje się orbitalom walencyjnym atomu galu w monomerze oraz w dimerze chlorku galu(III).
Gal tworzy trihalogenki, np. chlorek galu(III). W fazie stałej chlorek galu(III) występuje głównie w postaci dimerów, a w fazie gazowej – jako mieszanina dimerów i monomerów. Monomer chlorku galu(III) jest płaską cząsteczką, w której wszystkie atomy chloru są równocenne. Model dimeru przedstawiono na rysunku.
Na podstawie: CRC Handbook of Chemistry and Physics 97th Edition, CRC Press 2017.
Wyjaśnij, dlaczego monomery chlorku galu(III) mają zdolność łączenia się w dimery. Uwzględnij sposób powstawania wiązań, dzięki którym z monomeru chlorku galu(III) powstaje dimer.
Gal tworzy trihalogenki, np. chlorek galu(III). W fazie stałej chlorek galu(III) występuje głównie w postaci dimerów, a w fazie gazowej – jako mieszanina dimerów i monomerów. Monomer chlorku galu(III) jest płaską cząsteczką, w której wszystkie atomy chloru są równocenne. Model dimeru przedstawiono na rysunku.
Na podstawie: CRC Handbook of Chemistry and Physics 97th Edition, CRC Press 2017.
Wyjaśnij, dlaczego monomery chlorku galu(III) mają zdolność łączenia się w dimery. Uwzględnij sposób powstawania wiązań, dzięki którym z monomeru chlorku galu(III) powstaje dimer.
Tytan jest lekkim metalem odpornym na korozję. W zależności od stopnia utlenienia tytanu chlorki tego pierwiastka odznaczają się różnymi właściwościami fizycznymi. Wartości temperatury topnienia i temperatury wrzenia dwóch związków tytanu z chlorem zestawiono w poniższej tabeli.
Reakcja tlenku tytanu(IV) – o wzorze TiO2 – z tetrachlorometanem w temperaturze 500 °C prowadzi do powstania chlorku tytanu(IV) oraz tlenku węgla(IV) (reakcja 1.). Z kolei chlorek tytanu(II) – jako jedyny produkt reakcji – można otrzymać w wyniku przepuszczania par chlorku tytanu(IV) w temperaturze 1040 °C nad metalicznym tytanem (reakcja 2.).
Na podstawie: L. Kolditz, Chemia nieorganiczna, Warszawa 1994.
Uzupełnij poniższy schemat, tak aby przedstawiał on graficzny (klatkowy) zapis konfiguracji elektronowej jonu Ti2+ w stanie podstawowym. W zapisie uwzględnij numer powłoki i symbol podpowłoki.
Tytan jest lekkim metalem odpornym na korozję. W zależności od stopnia utlenienia tytanu chlorki tego pierwiastka odznaczają się różnymi właściwościami fizycznymi. Wartości temperatury topnienia i temperatury wrzenia dwóch związków tytanu z chlorem zestawiono
w poniższej tabeli.
Reakcja tlenku tytanu(IV) – o wzorze TiO2 – z tetrachlorometanem w temperaturze 500 °C prowadzi do powstania chlorku tytanu(IV) oraz tlenku węgla(IV) (reakcja 1.). Z kolei chlorek tytanu(II) – jako jedyny produkt reakcji – można otrzymać w wyniku przepuszczania par chlorku tytanu(IV) w temperaturze 1040 °C nad metalicznym tytanem (reakcja 2.).
Na podstawie: L. Kolditz, Chemia nieorganiczna, Warszawa 1994.
Uzupełnij poniższe zdania dotyczące tytanu i jego chlorków. Wybierz i zaznacz jedno określenie spośród podanych w każdym nawiasie. Sieć krystaliczna metalicznego tytanu składa się z (atomów / kationów) otoczonych chmurą zdelokalizowanych elektronów. W sieci krystalicznej chlorku tytanu(II) obecne są (atomy / jony). Wraz z obniżeniem stopnia utlenienia tytanu w chlorkach (maleje / rośnie) jonowy charakter wiązania.