W poniższej tabeli podano wzory wszystkich kationów i anionów, których obecność stwierdzono w badanym roztworze wodnym, oraz wartości stężenia tych jonów – z wyjątkiem anionów siarczanowych(VI).
Wiedząc, że każdy roztwór jest elektrycznie obojętny, ustal wartość stężenia molowego x anionów siarczanowych(VI) w badanym roztworze. Wynik podaj z dokładnością do jednego miejsca po przecinku.
W poniższej tabeli podano wzory wszystkich kationów i anionów, których obecność stwierdzono w badanym roztworze wodnym, oraz wartości stężenia tych jonów – z wyjątkiem anionów siarczanowych(VI).
Próbkę badanego roztworu (o składzie podanym w tabeli) poddano działaniu chloru. W wyniku reakcji roztwór zabarwił się na kolor żółtopomarańczowy. Substancją, która spowodowała to zabarwienie, była czerwonobrunatna lotna ciecz o charakterystycznym ostrym zapachu. Substancja ta reaguje z większością metali oraz niektórymi niemetalami, a także z nienasyconymi związkami organicznymi.
Napisz w formie jonowej skróconej równanie reakcji odpowiedniego składnika badanego roztworu z chlorem, w wyniku której powstała opisana substancja.
a) Uzupełnij tabelę, wpisując wartość stężenia jonów OH– oraz wartość pH i pOH roztworu wodnego, w którym stężenie jonów H+ jest równe 10–9 mol·dm–3. b) Określ odczyn opisanego roztworu.
Do 150,00 cm3 wodnego roztworu NaOH o stężeniu 0,54 mol·dm–3 dodano 50,00 cm3 kwasu solnego o stężeniu 2,02 mol·dm–3.
Oblicz pH otrzymanego roztworu.
Związek między mocą kwasu Brønsteda i sprzężonej z tym kwasem zasady w roztworach wodnych przedstawia zależność:
Ka · Kb = Kw
gdzie Ka oznacza stałą dysocjacji kwasu, Kb stałą dysocjacji sprzężonej zasady, a Kw iloczyn jonowy wody, którego wartość wynosi 1,0 · 10–14 w temperaturze 298 K. W poniższej tabeli podano wartości stałej dysocjacji wybranych kwasów w temperaturze 298 K.
Na podstawie powyższej informacji napisz wzory zasad sprzężonych z kwasami wymienionymi w tabeli uporządkowane od najsłabszej do najmocniejszej.
W reakcji wodnego roztworu chlorku kobaltu(II) z wodnym roztworem wodorotlenku sodu najpierw powstaje niebieski osad hydroksosoli: chlorku wodorotlenku kobaltu(II) o wzorze Co(OH)Cl. Związek ten pod wpływem kolejnych porcji roztworu wodorotlenku sodu przechodzi w różowy osad wodorotlenku kobaltu(II), który praktycznie nie rozpuszcza się w nadmiarze tego odczynnika, ale brunatnieje wskutek utleniania obecnym w powietrzu tlenem.
Opisane przemiany ilustruje poniższy schemat.
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, t. 2, Warszawa 2005, J. Minczewski, Z. Marczenko, Chemia analityczna. Podstawy teoretyczne i analiza jakościowa, Warszawa 2001
a) Napisz w formie jonowej skróconej równania reakcji oznaczonych numerami I i II. I: II: b) Napisz w formie cząsteczkowej równanie reakcji oznaczonej numerem III. III:
W reakcji wodnego roztworu chlorku kobaltu(II) z wodnym roztworem wodorotlenku sodu najpierw powstaje niebieski osad hydroksosoli: chlorku wodorotlenku kobaltu(II) o wzorze Co(OH)Cl. Związek ten pod wpływem kolejnych porcji roztworu wodorotlenku sodu przechodzi w różowy osad wodorotlenku kobaltu(II), który praktycznie nie rozpuszcza się w nadmiarze tego odczynnika, ale brunatnieje wskutek utleniania obecnym w powietrzu tlenem.
Opisane przemiany ilustruje poniższy schemat.
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, t. 2, Warszawa 2005, J. Minczewski, Z. Marczenko, Chemia analityczna. Podstawy teoretyczne i analiza jakościowa, Warszawa 2001
Określ charakter chemiczny (kwasowo-zasadowy) wodorotlenku kobaltu(II).
Badano szybkość trzech reakcji chemicznych zachodzących zgodnie z równaniami:
Reakcja I: A → B
Reakcja II: 2D → E
Reakcja III: F + G → H
Na wykresach przedstawiono zależność szybkości tych reakcji od stężeń molowych ich substratów oznaczonych symbolami A, D i F.
VI, VII, VIII – szybkości reakcji I, II i III
CA, CD, CF – stężenia molowe substratów A, D i F
Rząd reakcji ze względu na wybrany substrat to wykładnik potęgi, w której stężenie molowe danego substratu występuje w równaniu kinetycznym tej reakcji.
Przeanalizuj powyższe wykresy i uzupełnij tabelę, określając rząd reakcji I ze względu na substrat A oraz rząd reakcji III ze względu na substrat F.
Badano szybkość trzech reakcji chemicznych zachodzących zgodnie z równaniami:
Reakcja I: A → B
Reakcja II: 2D → E
Reakcja III: F + G → H
Na wykresach przedstawiono zależność szybkości tych reakcji od stężeń molowych ich substratów oznaczonych symbolami A, D i F.
VI, VII, VIII – szybkości reakcji I, II i III
CA, CD, CF – stężenia molowe substratów A, D i F
Rząd reakcji ze względu na wybrany substrat to wykładnik potęgi, w której stężenie molowe danego substratu występuje w równaniu kinetycznym tej reakcji.
Dokończ poniższy zapis, tak aby otrzymać równanie kinetyczne reakcji II.
Bufory pH to roztwory zawierające sprzężoną parę kwas–zasada Brønsteda w podobnych stężeniach. Roztwory te mają zdolność do utrzymywania stałej wartości pH po dodaniu do nich niewielkich ilości mocnych kwasów lub zasad. Działanie buforu pH polega na tym, że po dodaniu mocnego kwasu zasada Brønsteda reaguje z jonami H3O+, a po dodaniu mocnej zasady kwas Brønsteda reaguje z jonami OH–. Przykładem roztworu buforowego jest bufor amonowy, który otrzymuje się przez rozpuszczenie w wodzie amoniaku NH3 i chlorku amonu NH4Cl. Sprzężoną parę kwas–zasada stanowią obecne w nim kationy amonowe i cząsteczki amoniaku.
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, t. 1, Warszawa 2005
Napisz w formie jonowej skróconej równania reakcji, które zachodzą w buforze amonowym po dodaniu mocnego kwasu (reakcja I) i mocnej zasady (reakcja II). I: II:
Bufory pH to roztwory zawierające sprzężoną parę kwas–zasada Brønsteda w podobnych stężeniach. Roztwory te mają zdolność do utrzymywania stałej wartości pH po dodaniu do nich niewielkich ilości mocnych kwasów lub zasad. Działanie buforu pH polega na tym, że po dodaniu mocnego kwasu zasada Brønsteda reaguje z jonami H3O+, a po dodaniu mocnej zasady kwas Brønsteda reaguje z jonami OH–. Przykładem roztworu buforowego jest bufor amonowy, który otrzymuje się przez rozpuszczenie w wodzie amoniaku NH3 i chlorku amonu NH4Cl. Sprzężoną parę kwas–zasada stanowią obecne w nim kationy amonowe i cząsteczki amoniaku.
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, t. 1, Warszawa 2005
O pH roztworu buforowego decyduje rodzaj zawartej w nim sprzężonej pary kwas–zasada oraz stosunek stężenia kwasu i sprzężonej z nim zasady.
Oceń, jak wpłynie na pH buforu amonowego rozcieńczenie go wodą destylowaną. Uzupełnij poniższe zdanie, wpisując określenie wzrośnie, zmaleje lub nie zmieni się. Po rozcieńczeniu buforu amonowego jego pH:
Do wodnego roztworu chromianu(VI) potasu dodano kilka kropli rozcieńczonego kwasu siarkowego(VI) i stwierdzono, że roztwór zmienił barwę z żółtej na pomarańczową. Świadczyło to o powstaniu anionów dichromianowych(VI) (reakcja I). Następnie do otrzymanego roztworu wprowadzono kilka kropli roztworu wodorotlenku potasu i roztwór z powrotem stał się żółty (reakcja II).
Napisz w formie jonowej skróconej równania reakcji I i II. I: II:
Do wodnego roztworu chromianu(VI) potasu dodano kilka kropli rozcieńczonego kwasu siarkowego(VI) i stwierdzono, że roztwór zmienił barwę z żółtej na pomarańczową. Świadczyło to o powstaniu anionów dichromianowych(VI) (reakcja I). Następnie do otrzymanego roztworu wprowadzono kilka kropli roztworu wodorotlenku potasu i roztwór z powrotem stał się żółty (reakcja II).
Spośród poniższych zdań wybierz wszystkie, które są wnioskami wynikającymi z opisanego doświadczenia. I Chromiany(VI) są silnymi utleniaczami, a ich właściwości utleniające zależą od pH środowiska reakcji. II Przemiana anionów chromianowych(VI) w aniony dichromianowe(VI) jest reakcją odwracalną. III W środowisku zasadowym trwałe są aniony chromianowe(VI), a w środowisku kwasowym – aniony dichromianowe(VI). IV W środowisku zasadowym trwałe są aniony dichromianowe(VI), a w środowisku kwasowym – aniony chromianowe(VI). Numery wybranych zdań:
W 1 dm3 wody rozpuszczono azotan(V) srebra(I) AgNO3, azotan(V) miedzi(II) Cu(NO3)2 oraz azotan(V) sodu NaNO3, otrzymując roztwór o jednakowych stężeniach molowych kationów. Przez otrzymany roztwór przepuszczono ładunek elektryczny w warunkach umożliwiających wydzielenie na katodzie kolejno trzech pierwiastków.
Uzupełnij poniższą tabelę, wpisując nazwy lub symbole pierwiastków w kolejności ich wydzielania na katodzie.