Do określania położenia podwójnego wiązania w cząsteczkach alkenów wykorzystuje się ich utlenianie, np. za pomocą roztworu KMnO4 w środowisku kwasowym i w podwyższonej temperaturze. W tych warunkach dochodzi do rozerwania wiązania podwójnego węgiel – węgiel. W zależności od budowy cząsteczki alkenu mogą powstać kwasy karboksylowe, ketony lub tlenek węgla(IV).
Na podstawie: R. Morrison, R. Boyd, Chemia organiczna, Warszawa 1985.
Izomeryczne alkeny A i B utleniano KMnO4 w środowisku kwasowym. W wyniku przemiany, której uległ alken A, otrzymano jeden organiczny produkt, natomiast w wyniku utleniania alkenu B powstały dwa związki należące do różnych grup związków organicznych. W reakcji 1 mola alkenu B z 1 molem wodoru powstaje 2-metylopentan. Alken A występuje w postaci izomerów geometrycznych cis–trans.
Napisz wzory półstrukturalne (grupowe) alkenów A i B. Wyjaśnij, dlaczego alken B nie występuje w postaci izomerów geometrycznych cis–trans. Wyjaśnienie:
Do określania położenia podwójnego wiązania w cząsteczkach alkenów wykorzystuje się ich utlenianie, np. za pomocą roztworu KMnO4 w środowisku kwasowym i w podwyższonej temperaturze. W tych warunkach dochodzi do rozerwania wiązania podwójnego węgiel – węgiel. W zależności od budowy cząsteczki alkenu mogą powstać kwasy karboksylowe, ketony lub tlenek węgla(IV).
Na podstawie: R. Morrison, R. Boyd, Chemia organiczna, Warszawa 1985.
Izomeryczne alkeny A i B utleniano KMnO4 w środowisku kwasowym. W wyniku przemiany, której uległ alken A, otrzymano jeden organiczny produkt, natomiast w wyniku utleniania alkenu B powstały dwa związki należące do różnych grup związków organicznych. W reakcji 1 mola alkenu B z 1 molem wodoru powstaje 2-metylopentan. Alken A występuje w postaci izomerów geometrycznych cis–trans.
Podaj nazwy wszystkich związków organicznych, które powstały w wyniku utleniania alkenów A i B.
Woda przyłącza się do alkenów w obecności silnie kwasowego katalizatora H3O+. Addycja ta przebiega poprzez tworzenie kationów z ładunkiem dodatnim zlokalizowanym na atomie węgla, czyli tzw. karbokationów. Mechanizm tej reakcji dla alkenów o wzorze ogólnym R–CH=CH2 (R – grupa alkilowa) można przedstawić w trzech etapach.
Uwaga: w poniższych równaniach etapów reakcji wzór wody przedstawiono jako :OH2, a wzór kwasowego katalizatora zapisano jako H:OH2+.
Na podstawie: R. Morrison, R. Boyd, Chemia organiczna, Warszawa 1985.
Uzupełnij poniższe zdania. Wybierz i zaznacz jedno właściwe określenie spośród podanych w każdym nawiasie.
Podczas etapu I alken ulega działaniu reagenta (wolnorodnikowego / nukleofilowego / elektrofilowego). W etapie II karbokation łączy się z cząsteczką wody, w wyniku czego powstaje protonowany alkohol. Na tym etapie przemiany woda działa jako (nukleofil / elektrofil). Podczas etapu III protonowany alkohol (oddaje / pobiera) proton, co prowadzi do powstania obojętnego alkoholu oraz do odtworzenia katalizatora.
Woda przyłącza się do alkenów w obecności silnie kwasowego katalizatora H3O+. Addycja ta przebiega poprzez tworzenie kationów z ładunkiem dodatnim zlokalizowanym na atomie węgla, czyli tzw. karbokationów. Mechanizm tej reakcji dla alkenów o wzorze ogólnym R–CH=CH2 (R – grupa alkilowa) można przedstawić w trzech etapach.
Uwaga: w poniższych równaniach etapów reakcji wzór wody przedstawiono jako :OH2, a wzór kwasowego katalizatora zapisano jako H:OH2+.
Na podstawie: R. Morrison, R. Boyd, Chemia organiczna, Warszawa 1985.
Spośród alkoholi o podanych niżej wzorach wybierz te, których nie można (jako produktu głównego) otrzymać podczas hydratacji alkenów prowadzonej w obecności kwasu. Podkreśl wzory wybranych alkoholi i uzasadnij swój wybór. CH3CH2OH CH3CH(OH)CH3 CH3CH2CH2OH CH3CH2CH(OH)CH3 CH3CH2CH2CH2OH Uzasadnienie:
Poniżej przedstawiono wzory stereochemiczne Fischera trzech związków organicznych. Dwa z nich nie są optycznie czynne – ich cząsteczki nie są chiralne.
Spośród podanych wzorów związków chemicznych wybierz wzory tych, które nie są optycznie czynne. Wpisz do poniższej tabeli numery, którymi oznaczono te związki, i w każdym przypadku uzasadnij swój wybór.
Przeprowadzono ciąg przemian opisany poniższym schematem.
Napisz równanie reakcji prowadzącej do otrzymania produktu A. Zastosuj wzory półstrukturalne (grupowe) związków organicznych.
Przeprowadzono ciąg przemian opisany poniższym schematem.
Uzupełnij poniższą tabelę. Podaj wzór półstrukturalny (grupowy) związku organicznego oznaczonego na schemacie literą B. Określ typ reakcji (addycja, eliminacja, substytucja), w wyniku której powstaje związek C.
Aldehyd cynamonowy to związek o wzorze:
Aldehyd ten występuje w przyrodzie w konfiguracji trans.
Napisz wzór izomeru trans aldehydu cynamonowego.
W celu zbadania właściwości aldehydu cynamonowego wykonano eksperyment, którego przebieg zilustrowano na rysunku.
Porównaj przebieg reakcji w obu probówkach. Dokończ poniższe zdania – wybierz i podkreśl właściwe opisy spostrzeżeń spośród podanych w nawiasach. 1. Po dodaniu odczynnika do probówki I zaobserwowano, że roztwór bromu (uległ odbarwieniu / zabarwił się na fioletowo / nie zmienił zabarwienia). 2. W probówce II w wyniku ogrzewania zawiesiny wodorotlenku miedzi(II) z aldehydem cynamonowym powstał (szafirowy roztwór / ceglasty osad / różowy roztwór).
Przygotowano dwa wodne roztwory kwasu metanowego (mrówkowego) o temperaturze t = 20 oC: roztwór pierwszy o pH = 1,9 i roztwór drugi o nieznanym pH. Stopień dysocjacji kwasu w roztworze pierwszym jest równy 1,33%, a w roztworze drugim wynosi 4,15%.
Na podstawie: Z. Dobkowska, K. Pazdro, Szkolny poradnik chemiczny, Warszawa 1990.
Oblicz pH roztworu, w którym stopień dysocjacji kwasu metanowego jest równy 4,15%. Wynik końcowy zaokrąglij do pierwszego miejsca po przecinku. Oceń, czy wyższa wartość stopnia dysocjacji kwasu w roztworze oznacza, że roztwór ten ma bardziej kwasowy odczyn. Ocena:
Kwas 2-hydroksypropanowy w reakcji ze związkiem X tworzy ester o wzorze sumarycznym C5H8O4. Orbitalom walencyjnym każdego z atomów węgla budujących cząsteczkę związku X przypisuje się inny typ hybrydyzacji. Ponadto wiadomo, że w cząsteczce związku X występuje tylko jedna grupa funkcyjna.
Ustal wzór związku X, którego użyto do estryfikacji kwasu 2-hydroksypropanowego, i napisz równanie reakcji otrzymywania opisanego estru. Zastosuj wzory półstrukturalne (grupowe) związków organicznych.
W cząsteczce kwasu askorbinowego (witaminy C) występują dwa enolowe atomy węgla, czyli atomy węgla o hybrydyzacji sp2 z przyłączonymi grupami hydroksylowymi. Cząsteczka tego związku zawiera ponadto dwa asymetryczne atomy węgla – o hybrydyzacji sp3 z przyłączonymi czterema różnymi podstawnikami. Poniżej przedstawiono wzór witaminy C, w którym małymi literami oznaczono poszczególne atomy węgla.
Napisz litery (a–f), którymi oznaczono w powyższym wzorze kwasu askorbinowego wszystkie enolowe atomy węgla oraz wszystkie asymetryczne atomy węgla. Enolowe atomy węgla: Asymetryczne atomy węgla:
W cząsteczce kwasu askorbinowego (witaminy C) występują dwa enolowe atomy węgla, czyli atomy węgla o hybrydyzacji sp2 z przyłączonymi grupami hydroksylowymi. Cząsteczka tego związku zawiera ponadto dwa asymetryczne atomy węgla – o hybrydyzacji sp3 z przyłączonymi czterema różnymi podstawnikami. Poniżej przedstawiono wzór witaminy C, w którym małymi literami oznaczono poszczególne atomy węgla.
Określ formalne stopnie utlenienia atomów węgla oznaczonych w podanym wzorze kwasu askorbinowego literami a, b i f. Uzupełnij poniższą tabelę.
W cząsteczce kwasu askorbinowego (witaminy C) występują dwa enolowe atomy węgla, czyli atomy węgla o hybrydyzacji sp2 z przyłączonymi grupami hydroksylowymi. Cząsteczka tego związku zawiera ponadto dwa asymetryczne atomy węgla – o hybrydyzacji sp3 z przyłączonymi czterema różnymi podstawnikami. Poniżej przedstawiono wzór witaminy C, w którym małymi literami oznaczono poszczególne atomy węgla.
W celu zbadania właściwości kwasu askorbinowego przeprowadzono doświadczenie, którego przebieg zilustrowano na poniższym rysunku.
Przed dodaniem wodnego roztworu kwasu askorbinowego zawartość każdej probówki była barwna.
Napisz numery probówek, w których po dodaniu roztworu kwasu askorbinowego zaobserwowano odbarwianie się ich zawartości.
Kwas askorbinowy ulega przemianie w kwas dehydroaskorbinowy zgodnie z poniższym schematem. Odszczepienie jednego protonu od cząsteczki witaminy C prowadzi do powstania anionu askorbinianowego (reakcja 1.). W wyniku oddania przez anion askorbinianowy elektronu i drugiego protonu powstaje rodnik askorbylowy (reakcja 2.). Wskutek utraty elektronu przez rodnik askorbylowy tworzy się kwas dehydroaskorbinowy (reakcja 3.).
Na podstawie: J. Szymańska-Pasternak, A. Janicka, J. Bober, Witamina C jako oręż w walce z rakiem, „Onkologia w praktyce klinicznej”, 2011/1.
Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeśli jest fałszywa. 1. Anion askorbinianowy – w zależności od warunków reakcji – może przyłączać albo oddawać proton. 2. Rodnik askorbylowy jest reaktywny chemicznie, ponieważ występuje w nim jeden niesparowany elektron. 3. Kwas dehydroaskorbinowy jest produktem redukcji rodnika askorbylowego.