Fosgen to trujący związek o wzorze COCl2. Jego temperatura topnienia jest równa –118 °C, a temperatura wrzenia wynosi 8 °C (pod ciśnieniem 1000 hPa). Fosgen reaguje z wodą i ulega hydrolizie, której produktami są tlenek węgla(IV) i chlorowodór.
Na podstawie: P. Mastalerz, Chemia organiczna, Warszawa 1986.
Napisz równanie reakcji hydrolizy fosgenu.
Fosgen to trujący związek o wzorze COCl2. Jego temperatura topnienia jest równa –118 °C, a temperatura wrzenia wynosi 8 °C (pod ciśnieniem 1000 hPa). Fosgen reaguje z wodą i ulega hydrolizie, której produktami są tlenek węgla(IV) i chlorowodór.
Na podstawie: P. Mastalerz, Chemia organiczna, Warszawa 1986.
W temperaturze 25 °C i pod ciśnieniem 1000 hPa w 1 dm3 fosgenu znajduje się 2,43∙1022 cząsteczek tego związku.
Oblicz gęstość fosgenu i określ jego stan skupienia w opisanych warunkach.
W środowisku alkalicznym jod utlenia ilościowo metanal do kwasu metanowego. Czynnikiem utleniającym jest anion jodanowy(I), który powstaje w reakcji jodu cząsteczkowego z anionami hydroksylowymi. Przebieg opisanych przemian można zilustrować następującymi równaniami:
reakcja 1.: I2 + 2OH− → IO− + I− + H2O
reakcja 2.: HCHO + IO− + OH− → HCOO− + I− + H2O
Na podstawie: J. Minczewski, Z. Marczenko, Chemia analityczna 2. Chemiczne metody analizy ilościowej, Warszawa 1998.
Napisz w formie jonowej skróconej sumaryczne równanie opisanego utleniania metanalu jodem w środowisku alkalicznym i określ stosunek masowy, w jakim metanal reaguje z jodem. Równanie reakcji: Stosunek masowy metanalu i jodu mHCHO : mI2:
Węglan sodu jest solą dość dobrze rozpuszczalną w wodzie. Podczas ochładzania jej gorącego roztworu nie powstaje sól bezwodna, ale wydzielają się hydraty, których skład zależy od temperatury. W temperaturze 20 °C w równowadze z roztworem nasyconym pozostaje dekahydrat o wzorze Na2CO3∙10 H2O. Rozpuszczalność dekahydratu węglanu sodu w wodzie w tej temperaturze jest równa 21,5 g w 100 g wody.
Na podstawie: W. Mizerski, Tablice chemiczne, Warszawa 1997.
Oblicz rozpuszczalność węglanu sodu (wyrażoną w gramach substancji na 100 gramów wody) w opisanych warunkach w przeliczeniu na sól bezwodną.
Przemysłowa produkcja kwasu azotowego(V) jest procesem kilkuetapowym. Pierwszym etapem jest katalityczne utlenienie amoniaku tlenem z powietrza do tlenku azotu(II). W drugim etapie otrzymany tlenek azotu(II) utlenia się do tlenku azotu(IV). Ta reakcja przebiega zgodnie z poniższym równaniem:
Powstały tlenek azotu(IV) jest następnie wprowadzany do wody, w wyniku czego powstaje roztwór kwasu azotowego(V) o stężeniu w zakresie 50%–60% (w procentach masowych).
Na podstawie: K. Schmidt-Szałowski, M. Szafran, E. Bobryk, J. Sentek, Technologia chemiczna. Przemysł nieorganiczny, Warszawa 2013.
Na poniższym wykresie przedstawiono zależność równowagowego stopnia przemiany NO w NO2 od temperatury dla dwóch różnych wartości ciśnienia p1 i p2. Wydajność tworzenia NO2 jest tym większa, im większa jest wartość równowagowego stopnia przemiany.
Uzupełnij poniższe zdania. Wybierz i podkreśl jedną odpowiedź spośród podanych w każdym nawiasie.
Ciśnienie p1 jest (wyższe / niższe) od ciśnienia p2. Przemiana NO w NO2 to reakcja (endotermiczna / egzotermiczna), co oznacza, że wartość ΔH tej przemiany jest (dodatnia / ujemna).
Przemysłowa produkcja kwasu azotowego(V) jest procesem kilkuetapowym. Pierwszym etapem jest katalityczne utlenienie amoniaku tlenem z powietrza do tlenku azotu(II). W drugim etapie otrzymany tlenek azotu(II) utlenia się do tlenku azotu(IV). Ta reakcja przebiega zgodnie z poniższym równaniem:
Powstały tlenek azotu(IV) jest następnie wprowadzany do wody, w wyniku czego powstaje roztwór kwasu azotowego(V) o stężeniu w zakresie 50%–60% (w procentach masowych).
Na podstawie: K. Schmidt-Szałowski, M. Szafran, E. Bobryk, J. Sentek, Technologia chemiczna. Przemysł nieorganiczny, Warszawa 2013.
Napisz równanie opisanej reakcji tlenku azotu(IV) z wodą, której produktami są kwas azotowy(V) i tlenek azotu(II). Napisz wzór reduktora i wzór utleniacza. Wzór reduktora: Wzór utleniacza:
Równanie reakcji:
Do zbiornika, z którego wypompowano powietrze, wprowadzono tlenek azotu(IV) o wzorze NO2 i po zamknięciu utrzymywano temperaturę 25 °C do momentu osiągnięcia przez układ stanu równowagi opisanej poniższym równaniem:
2NO2 ⇄ N2O4 ΔH < 0
Zmiany stężenia obu reagentów przedstawiono na poniższym wykresie.
Oblicz stężeniową stałą równowagi opisanej reakcji w temperaturze 25 °C oraz uzupełnij zdanie – wybierz i podkreśl jedną odpowiedź spośród podanych w nawiasie. Stężeniowa stała równowagi opisanej reakcji w temperaturze wyższej niż 25 °C jest (mniejsza niż / większa niż / taka sama jak) stężeniowa stała równowagi tej reakcji w temperaturze 25 °C.
Roztwory zawierające porównywalne liczby drobin kwasu Brønsteda i sprzężonej z nim zasady są nazywane roztworami buforowymi. Przykładem jest bufor octanowy. Kwasem Brønsteda są w nim cząsteczki CH3COOH, a zasadą – jony CH3COO– pochodzące z całkowicie zdysocjowanej soli, np. octanu sodu. Wprowadzenie do roztworu buforowego mocnego kwasu skutkuje zmniejszeniem stężenia zasady i wzrostem stężenia sprzężonego z nią kwasu. Dodatek mocnej zasady prowadzi do zmniejszenia stężenia kwasu i wzrostu stężenia sprzężonej zasady. Wartość pH buforu praktycznie nie zależy od jego stężenia i nieznacznie się zmienia podczas dodawania niewielkich ilości mocnych kwasów lub mocnych zasad.
Napisz w formie jonowej skróconej równanie reakcji zachodzącej podczas dodawania mocnej zasady (OH–) do buforu octanowego oraz uzupełnij zdanie – wybierz i podkreśl jedną odpowiedź spośród podanych w nawiasie. Równanie reakcji z mocną zasadą:
Po wprowadzeniu mocnego kwasu do buforu octanowego stężenie jonów octanowych (wzrośnie / zmaleje / nie ulegnie zmianie).
Roztwory zawierające porównywalne liczby drobin kwasu Brønsteda i sprzężonej z nim zasady są nazywane roztworami buforowymi. Przykładem jest bufor octanowy. Kwasem Brønsteda są w nim cząsteczki CH3COOH, a zasadą – jony CH3COO– pochodzące z całkowicie zdysocjowanej soli, np. octanu sodu. Wprowadzenie do roztworu buforowego mocnego kwasu skutkuje zmniejszeniem stężenia zasady i wzrostem stężenia sprzężonego z nią kwasu. Dodatek mocnej zasady prowadzi do zmniejszenia stężenia kwasu i wzrostu stężenia sprzężonej zasady. Wartość pH buforu praktycznie nie zależy od jego stężenia i nieznacznie się zmienia podczas dodawania niewielkich ilości mocnych kwasów lub mocnych zasad.
Przeprowadzono doświadczenie, w którym zmieszano jednakowe objętości wodnych roztworów różnych substancji. Wszystkie roztwory miały jednakowe stężenie molowe. Mieszaniny przygotowano zgodnie z poniższym schematem.
Które z przygotowanych roztworów są buforami? Napisz ich numery.
Zmieszano 100 cm3 wodnego roztworu Ba(OH)2 o stężeniu 0,2 mol∙dm–3 z 40 cm3 wodnego roztworu HCl o stężeniu 0,8 mol∙dm–3. W mieszaninie przebiegła reakcja opisana poniższym równaniem:
H3O+ + OH– → 2H2O
Oblicz pH powstałego roztworu w temperaturze 25 °C. W obliczeniach przyjmij, że objętość tego roztworu jest sumą objętości roztworów Ba(OH)2 i HCl. Wynik końcowy zaokrąglij do drugiego miejsca po przecinku.
Zmieszano 100 cm3 wodnego roztworu Ba(OH)2 o stężeniu 0,2 mol∙dm–3 z 40 cm3 wodnego roztworu HCl o stężeniu 0,8 mol∙dm–3. W mieszaninie przebiegła reakcja opisana poniższym równaniem:
H3O+ + OH– → 2H2O
Wpisz do poniższej tabeli wartości stężenia molowego jonów baru i jonów chlorkowych w otrzymanym roztworze.
Większość kationów metali występuje w roztworze wodnym w postaci jonów kompleksowych, tzw. akwakompleksów, w których cząsteczki wody otaczają jon metalu, czyli są ligandami. Dodanie do takiego roztworu reagenta, który z kationami danego metalu tworzy trwalsze kompleksy niż woda, powoduje wymianę ligandów. Kompleksy mogą mieć różne barwy, zależnie od rodzaju ligandów, np. jon Fe3+ tworzy z jonami fluorkowymi F– kompleks bezbarwny, a z jonami tiocyjanianowymi (rodankowymi) SCN– – krwistoczerwony. W dwóch probówkach znajdował się wodny roztwór chlorku żelaza(III). Do pierwszej probówki wsypano niewielką ilość stałego fluorku potasu, co poskutkowało odbarwieniem żółtego roztworu, a następnie do obu probówek dodano wodny roztwór rodanku potasu (KSCN). Stwierdzono, że tylko w probówce drugiej pojawiło się krwistoczerwone zabarwienie.
W badanych roztworach występowały jony kompleksowe żelaza(III):
I rodankowy, II fluorkowy, III akwakompleks
Uszereguj wymienione jony kompleksowe zgodnie ze wzrostem ich trwałości. Napisz w odpowiedniej kolejności numery, którymi je oznaczono. najmniejsza trwałość największa trwałość
W laboratorium tlenek wapnia można otrzymać ze szczawianu wapnia o wzorze CaC2O4. Szczawian wapnia ulega termicznemu rozkładowi, który przebiega zgodnie z poniższym równaniem:
CaC2O4 → CaCO3 + CO
Dalsze ogrzewanie, w wyższej temperaturze, prowadzi do rozkładu węglanu wapnia:
CaCO3 → CaO + CO2
Próbkę szczawianu wapnia o masie 12,8 g umieszczono w tyglu pod wyciągiem i poddano prażeniu. Po pewnym czasie proces przerwano, a następnie ostudzono tygiel, zważono jego zawartość i zbadano skład mieszaniny poreakcyjnej. Stwierdzono, że masa zawartości tygla zmalała o 6,32 g i że otrzymana mieszanina nie zawierała szczawianu wapnia.
Oblicz w procentach masowych zawartość tlenku wapnia w mieszaninie otrzymanej po przerwaniu prażenia. Rozwiązanie tego zadania dostępne jest nieodpłatnie pod poniższym linkiem:
W celu porównania reaktywności różnych metali wykonano doświadczenie, w którym płytkę z metalu M zważono i umieszczono w naczyniu zawierającym wodny roztwór pewnej soli. W wyniku zachodzącej reakcji roztwór się odbarwił. Płytkę wyjęto, opłukano wodą destylowaną, wysuszono i zważono ponownie. Ustalono, że w wyniku reakcji masa płytki zmalała.
Wybierz i podkreśl jeden symbol metalu w zestawie I i jeden wzór odczynnika w zestawie II, tak aby otrzymać schemat przeprowadzonego doświadczenia.
W celu porównania reaktywności różnych metali wykonano doświadczenie, w którym płytkę z metalu M zważono i umieszczono w naczyniu zawierającym wodny roztwór pewnej soli. W wyniku zachodzącej reakcji roztwór się odbarwił. Płytkę wyjęto, opłukano wodą destylowaną, wysuszono i zważono ponownie. Ustalono, że w wyniku reakcji masa płytki zmalała.
Napisz w formie jonowej skróconej równanie reakcji, która zaszła podczas doświadczenia.