Przeprowadzono ciąg przemian opisany poniższym schematem.
Uzupełnij poniższą tabelę. Podaj wzór półstrukturalny (grupowy) związku organicznego oznaczonego na schemacie literą B. Określ typ reakcji (addycja, eliminacja, substytucja), w wyniku której powstaje związek C.
Aldehyd cynamonowy to związek o wzorze:
Aldehyd ten występuje w przyrodzie w konfiguracji trans.
Napisz wzór izomeru trans aldehydu cynamonowego.
W celu zbadania właściwości aldehydu cynamonowego wykonano eksperyment, którego przebieg zilustrowano na rysunku.
Porównaj przebieg reakcji w obu probówkach. Dokończ poniższe zdania – wybierz i podkreśl właściwe opisy spostrzeżeń spośród podanych w nawiasach. 1. Po dodaniu odczynnika do probówki I zaobserwowano, że roztwór bromu (uległ odbarwieniu / zabarwił się na fioletowo / nie zmienił zabarwienia). 2. W probówce II w wyniku ogrzewania zawiesiny wodorotlenku miedzi(II) z aldehydem cynamonowym powstał (szafirowy roztwór / ceglasty osad / różowy roztwór).
Przygotowano dwa wodne roztwory kwasu metanowego (mrówkowego) o temperaturze t = 20 oC: roztwór pierwszy o pH = 1,9 i roztwór drugi o nieznanym pH. Stopień dysocjacji kwasu w roztworze pierwszym jest równy 1,33%, a w roztworze drugim wynosi 4,15%.
Na podstawie: Z. Dobkowska, K. Pazdro, Szkolny poradnik chemiczny, Warszawa 1990.
Oblicz pH roztworu, w którym stopień dysocjacji kwasu metanowego jest równy 4,15%. Wynik końcowy zaokrąglij do pierwszego miejsca po przecinku. Oceń, czy wyższa wartość stopnia dysocjacji kwasu w roztworze oznacza, że roztwór ten ma bardziej kwasowy odczyn. Ocena:
Kwas 2-hydroksypropanowy w reakcji ze związkiem X tworzy ester o wzorze sumarycznym C5H8O4. Orbitalom walencyjnym każdego z atomów węgla budujących cząsteczkę związku X przypisuje się inny typ hybrydyzacji. Ponadto wiadomo, że w cząsteczce związku X występuje tylko jedna grupa funkcyjna.
Ustal wzór związku X, którego użyto do estryfikacji kwasu 2-hydroksypropanowego, i napisz równanie reakcji otrzymywania opisanego estru. Zastosuj wzory półstrukturalne (grupowe) związków organicznych.
W cząsteczce kwasu askorbinowego (witaminy C) występują dwa enolowe atomy węgla, czyli atomy węgla o hybrydyzacji sp2 z przyłączonymi grupami hydroksylowymi. Cząsteczka tego związku zawiera ponadto dwa asymetryczne atomy węgla – o hybrydyzacji sp3 z przyłączonymi czterema różnymi podstawnikami. Poniżej przedstawiono wzór witaminy C, w którym małymi literami oznaczono poszczególne atomy węgla.
Napisz litery (a–f), którymi oznaczono w powyższym wzorze kwasu askorbinowego wszystkie enolowe atomy węgla oraz wszystkie asymetryczne atomy węgla. Enolowe atomy węgla: Asymetryczne atomy węgla:
W cząsteczce kwasu askorbinowego (witaminy C) występują dwa enolowe atomy węgla, czyli atomy węgla o hybrydyzacji sp2 z przyłączonymi grupami hydroksylowymi. Cząsteczka tego związku zawiera ponadto dwa asymetryczne atomy węgla – o hybrydyzacji sp3 z przyłączonymi czterema różnymi podstawnikami. Poniżej przedstawiono wzór witaminy C, w którym małymi literami oznaczono poszczególne atomy węgla.
Określ formalne stopnie utlenienia atomów węgla oznaczonych w podanym wzorze kwasu askorbinowego literami a, b i f. Uzupełnij poniższą tabelę.
W cząsteczce kwasu askorbinowego (witaminy C) występują dwa enolowe atomy węgla, czyli atomy węgla o hybrydyzacji sp2 z przyłączonymi grupami hydroksylowymi. Cząsteczka tego związku zawiera ponadto dwa asymetryczne atomy węgla – o hybrydyzacji sp3 z przyłączonymi czterema różnymi podstawnikami. Poniżej przedstawiono wzór witaminy C, w którym małymi literami oznaczono poszczególne atomy węgla.
W celu zbadania właściwości kwasu askorbinowego przeprowadzono doświadczenie, którego przebieg zilustrowano na poniższym rysunku.
Przed dodaniem wodnego roztworu kwasu askorbinowego zawartość każdej probówki była barwna.
Napisz numery probówek, w których po dodaniu roztworu kwasu askorbinowego zaobserwowano odbarwianie się ich zawartości.
Kwas askorbinowy ulega przemianie w kwas dehydroaskorbinowy zgodnie z poniższym schematem. Odszczepienie jednego protonu od cząsteczki witaminy C prowadzi do powstania anionu askorbinianowego (reakcja 1.). W wyniku oddania przez anion askorbinianowy elektronu i drugiego protonu powstaje rodnik askorbylowy (reakcja 2.). Wskutek utraty elektronu przez rodnik askorbylowy tworzy się kwas dehydroaskorbinowy (reakcja 3.).
Na podstawie: J. Szymańska-Pasternak, A. Janicka, J. Bober, Witamina C jako oręż w walce z rakiem, „Onkologia w praktyce klinicznej”, 2011/1.
Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeśli jest fałszywa. 1. Anion askorbinianowy – w zależności od warunków reakcji – może przyłączać albo oddawać proton. 2. Rodnik askorbylowy jest reaktywny chemicznie, ponieważ występuje w nim jeden niesparowany elektron. 3. Kwas dehydroaskorbinowy jest produktem redukcji rodnika askorbylowego.
Kwas askorbinowy ulega przemianie w kwas dehydroaskorbinowy zgodnie z poniższym schematem. Odszczepienie jednego protonu od cząsteczki witaminy C prowadzi do powstania anionu askorbinianowego (reakcja 1.). W wyniku oddania przez anion askorbinianowy elektronu i drugiego protonu powstaje rodnik askorbylowy (reakcja 2.). Wskutek utraty elektronu przez rodnik askorbylowy tworzy się kwas dehydroaskorbinowy (reakcja 3.).
Na podstawie: J. Szymańska-Pasternak, A. Janicka, J. Bober, Witamina C jako oręż w walce z rakiem, „Onkologia w praktyce klinicznej”, 2011/1.
Poniżej przedstawiono schemat reakcji utleniania witaminy C tlenem z powietrza. Reakcja ta jest katalizowana przez enzym o nazwie oksydaza askorbinianowa.
Napisz równanie procesu utleniania (uzupełnij schemat) i równanie procesu redukcji zachodzących podczas opisanej przemiany. Oba równania przedstaw w formie jonowej z uwzględnieniem liczby oddawanych lub pobieranych elektronów (zapis jonowo-elektronowy). Równanie procesu utleniania: Równanie procesu redukcji:
Kwas askorbinowy ulega przemianie w kwas dehydroaskorbinowy zgodnie z poniższym schematem. Odszczepienie jednego protonu od cząsteczki witaminy C prowadzi do powstania anionu askorbinianowego (reakcja 1.). W wyniku oddania przez anion askorbinianowy elektronu i drugiego protonu powstaje rodnik askorbylowy (reakcja 2.). Wskutek utraty elektronu przez rodnik askorbylowy tworzy się kwas dehydroaskorbinowy (reakcja 3.).
Na podstawie: J. Szymańska-Pasternak, A. Janicka, J. Bober, Witamina C jako oręż w walce z rakiem, „Onkologia w praktyce klinicznej”, 2011/1.
Roztwór wodny kwasu dehydroaskorbinowego ma odczyn obojętny. Kwas ten ulega jednak działaniu wodnych roztworów wodorotlenków metali, w wyniku czego tworzą się sole. W tej reakcji rozerwaniu ulega wiązanie estrowe, co prowadzi do otwarcia pierścienia cząsteczki.
Uzupełnij podany niżej schemat opisanej reakcji – wpisz wzór półstrukturalny (grupowy) jej organicznego produktu.
Mocznik jest diamidem kwasu węglowego. Ogrzewany z roztworami mocnych kwasów i z zasadami, ulega przemianom zilustrowanym poniższymi równaniami:
CO(NH2)2 + H2O + 2H+ → 2NH4+ + CO2
CO(NH2) 2 + 2OH− → CO32− + 2NH3
W celu porównania właściwości acetamidu i mocznika przeprowadzono dwa doświadczenia A i B zilustrowane na schemacie.
Po zmieszaniu reagentów zawartość każdej probówki ogrzano. Stwierdzono, że we wszystkich probówkach przebiegły reakcje chemiczne.
Napisz w formie jonowej skróconej równanie reakcji zachodzącej podczas ogrzewania acetamidu Doświadczenie A, probówka I: Doświadczenie B, probówka I:
• w wodnym roztworze kwasu siarkowego(VI) (doświadczenie A, probówka I)
• w wodnym roztworze wodorotlenku sodu (doświadczenie B, probówka I).
Mocznik jest diamidem kwasu węglowego. Ogrzewany z roztworami mocnych kwasów i z zasadami, ulega przemianom zilustrowanym poniższymi równaniami:
CO(NH2)2 + H2O + 2H+ → 2NH4+ + CO2
CO(NH2) 2 + 2OH− → CO32− + 2NH3
W celu porównania właściwości acetamidu i mocznika przeprowadzono dwa doświadczenia A i B zilustrowane na schemacie.
Po zmieszaniu reagentów zawartość każdej probówki ogrzano. Stwierdzono, że we wszystkich probówkach przebiegły reakcje chemiczne.
Oceń, które z przeprowadzonych doświadczeń (A czy B) można wykorzystać w celu odróżnienia acetamidu od mocznika, i uzasadnij swoje stanowisko. W uzasadnieniu odwołaj się do zmian możliwych do zaobserwowania w probówkach I i II (w wybranym doświadczeniu) i pozwalających na odróżnienie acetamidu od mocznika. W celu odróżnienia acetamidu od mocznika należy przeprowadzić doświadczenie: Uzasadnienie: Probówka I: Probówka II:
Oceń, czy podane poniżej informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeśli jest fałszywa.
1. Leucyna i izoleucyna są izomerami. 2. Jedyną przyczyną różnicy wartości punktu izoelektrycznego kwasu glutaminowego i lizyny jest różna długość łańcucha węglowego w cząsteczkach tych związków. 3. W cząsteczce treoniny można wyróżnić dwa asymetryczne atomy węgla.
Jednym z naturalnie występujących tripeptydów jest związek o poniższym wzorze.
Napisz wzór sekwencji przedstawionego tripeptydu, posługując się trzyliterowymi kodami aminokwasów. Pamiętaj, że w tej notacji z lewej strony umieszcza się kod aminokwasu, którego reszta zawiera wolną grupę aminową połączoną z atomem węgla α.