Z dwóch pierwiastków, które umownie oznaczono literami X i E, powstają wodorki o wzorach XH3 i EH3. Atomy każdego z tych pierwiastków mają tyle elektronów niewalencyjnych, ile wynosi liczba nukleonów w atomie izotopu 28Si. W stanie podstawowym atomy pierwiastka E mają większą liczbę elektronów niesparowanych niż atomy pierwiastka X.
Napisz fragment konfiguracji elektronowej atomu w stanie podstawowym pierwiastka E opisujący rozmieszczenie elektronów walencyjnych na podpowłokach – zastosuj schemat klatkowy. Pod schematem napisz numer powłoki i symbole podpowłok.
W poniższej tabeli podano wartości promieni atomowych r1 , r2 , r3 i r4 atomów czterech pierwiastków.
Uzupełnij poniższą tabelę. Na podstawie zmienności promieni atomów w grupach i okresach przyporządkuj wymienionym pierwiastkom wartości promieni atomowych ich atomów.
Bor tworzy z chlorem związek o wzorze BCl3, występujący w postaci płaskich trójkątnych cząsteczek. Te cząsteczki mogą łączyć się z innymi drobinami zawierającymi wolne pary elektronowe. Chlorek boru reaguje z wodą i podczas tej reakcji tworzą się H3BO3 (kwas ortoborowy) oraz HCl.
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.
Narysuj wzór elektronowy chlorku boru. Uwzględnij wolne pary elektronowe.
Bor tworzy z chlorem związek o wzorze BCl3, występujący w postaci płaskich trójkątnych cząsteczek. Te cząsteczki mogą łączyć się z innymi drobinami zawierającymi wolne pary elektronowe. Chlorek boru reaguje z wodą i podczas tej reakcji tworzą się H3BO3 (kwas ortoborowy) oraz HCl.
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.
Spośród wymienionych drobin: Cl– NH4+ CH4 NH3 wybierz te, które mogą łączyć się z chlorkiem boru, i napisz ich wzory. Wyjaśnij, dlaczego cząsteczki chlorku boru mają zdolność do tworzenia wiązań z tymi drobinami. Odwołaj się do struktury elektronowej cząsteczek chlorku boru. Z chlorkiem boru mogą łączyć się: Cząsteczki chlorku boru mają zdolność do tworzenia wiązań z wybranymi drobinami, ponieważ
Bor tworzy z chlorem związek o wzorze BCl3, występujący w postaci płaskich trójkątnych cząsteczek. Te cząsteczki mogą łączyć się z innymi drobinami zawierającymi wolne pary elektronowe. Chlorek boru reaguje z wodą i podczas tej reakcji tworzą się H3BO3 (kwas ortoborowy) oraz HCl.
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.
Napisz w formie cząsteczkowej równanie reakcji chlorku boru z wodą.
Gaz syntezowy, czyli mieszanina CO i H2, jest otrzymywany w przemyśle różnymi metodami. Niżej podano równania dwóch reakcji, w których powstaje taka mieszanina.
I CH4 + CO2 → 2CO + 2H2 ∆H < 0
II CH4 + H2O → CO + 3H2 ∆H > 0
Na poniższym wykresie przedstawiono zależność stopnia przemiany metanu od temperatury dla dwóch różnych wartości ciśnienia dla jednej z tych reakcji. Stopień przemiany metanu jest miarą wydajności reakcji – im większy stopień przemiany, tym większa wydajność reakcji.
Na podstawie: M. Pańczyk, T. Borowiecki, Otrzymywanie i zastosowanie gazu syntezowego, Lublin 2013.
Napisz numer reakcji (I albo II), do której odnosi się powyższy wykres stopnia przemiany metanu. Odpowiedź uzasadnij – uwzględnij efekt energetyczny reakcji. Numer reakcji: Uzasadnienie:
Gaz syntezowy, czyli mieszanina CO i H2, jest otrzymywany w przemyśle różnymi metodami. Niżej podano równania dwóch reakcji, w których powstaje taka mieszanina.
I CH4 + CO2 → 2CO + 2H2 ∆H < 0
II CH4 + H2O → CO + 3H2 ∆H > 0
Na poniższym wykresie przedstawiono zależność stopnia przemiany metanu od temperatury dla dwóch różnych wartości ciśnienia dla jednej z tych reakcji. Stopień przemiany metanu jest miarą wydajności reakcji – im większy stopień przemiany, tym większa wydajność reakcji.
Na podstawie: M. Pańczyk, T. Borowiecki, Otrzymywanie i zastosowanie gazu syntezowego, Lublin 2013.
Uzupełnij zdanie o wpływie ciśnienia na stopień przemiany metanu – wybierz i zaznacz jedną odpowiedź spośród podanych w nawiasie. Wyjaśnij przedstawioną na wykresie zależność stopnia przemiany metanu od ciśnienia. W stałej temperaturze wzrost ciśnienia skutkuje (wzrostem / spadkiem) stopnia przemiany metanu. Wyjaśnienie:
Do reaktora o pojemności 1,0 dm3 wprowadzono pewną liczbę moli substancji A oraz pewną liczbę moli substancji B. Reaktor zamknięto i zainicjowano reakcję chemiczną, która przebiegała w stałej temperaturze T zgodnie z równaniem:
A (g) + B (g) ⇄ C (g) + D (g)
Do momentu ustalenia stanu równowagi przereagowało 20% substancji A. W tych warunkach stężeniowa stała równowagi opisanej reakcji jest równa 2,0.
Oblicz, jaki procent liczby moli wyjściowej mieszaniny stanowiła substancja A.
Produktem spalania metalicznego sodu w tlenie jest nadtlenek sodu o wzorze Na2O2. W wyniku reakcji tego związku z sodem w podwyższonej temperaturze można otrzymać tlenek sodu Na2O. Każdy z opisanych związków sodu z tlenem ma budowę jonową i tworzy sieć krystaliczną zbudowaną z kationów i anionów. Nadtlenek sodu reaguje gwałtownie z wodą. Jednym z produktów tej reakcji, zachodzącej bez zmiany stopni utlenienia, jest nadtlenek wodoru H2O2.
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2006.
Napisz wzór anionu występującego w nadtlenku sodu oraz wzór anionu występującego w tlenku sodu. Wzór anionu w nadtlenku sodu: Wzór anionu w tlenku sodu:
Produktem spalania metalicznego sodu w tlenie jest nadtlenek sodu o wzorze Na2O2. W wyniku reakcji tego związku z sodem w podwyższonej temperaturze można otrzymać tlenek sodu Na2O. Każdy z opisanych związków sodu z tlenem ma budowę jonową i tworzy sieć krystaliczną zbudowaną z kationów i anionów. Nadtlenek sodu reaguje gwałtownie z wodą. Jednym z produktów tej reakcji, zachodzącej bez zmiany stopni utlenienia, jest nadtlenek wodoru H2O2.
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2006.
Napisz w formie cząsteczkowej równanie reakcji nadtlenku sodu z wodą.
Przeprowadzono doświadczenie zilustrowane schematem.
Po zmieszaniu obu roztworów zaszła reakcja utleniania i redukcji, w wyniku której wytrącił się biały osad jodku miedzi(I) i wydzielił się wolny jod.
Napisz w formie jonowej skróconej równanie reakcji, która zaszła po zmieszaniu roztworów KI i CuSO4.
Poniższy schemat przedstawia przemiany, jakim ulegają miedź i jej związki.
Rozstrzygnij, czy substancją A może być kwas solny o stężeniu 10 % masowych. Uzasadnij swoją odpowiedź. W uzasadnieniu odwołaj się do właściwości miedzi i kwasu solnego. Rozstrzygnięcie: Uzasadnienie:
Poniższy schemat przedstawia przemiany, jakim ulegają miedź i jej związki.
Napisz wzór sumaryczny substancji B, jeśli wiadomo, że po zajściu reakcji i odsączeniu osadu w roztworze obecne były kationy sodu i aniony chlorkowe. Napisz w formie jonowej równanie reakcji 3., której produktem jest m.in. jon kompleksowy o wzorze [Cu(NH3)4]2+. Wzór substancji B: Równanie reakcji 3.:
Poniższy schemat przedstawia przemiany, jakim ulegają miedź i jej związki.
Spośród podanych poniżej wzorów wybierz wzory wszystkich substancji, w których wodnych roztworach na zimno roztwarza się wodorotlenek miedzi(II). Napisz numery wybranych wzorów.
Wybrane wzory:
W dwóch probówkach oznaczonych numerami I i II umieszczono jednakową ilość wiórków magnezowych o tym samym stopniu rozdrobnienia. Następnie do probówek wprowadzono jednakowe objętości roztworów o tej samej temperaturze:
– do probówki I – kwas solny o pH = 1
– do probówki II – wodny roztwór kwasu siarkowego(VI) o stężeniu 0,1 mol·dm–3 .
Przebieg doświadczenia zilustrowano poniższym rysunkiem.
Podczas opisanego doświadczenia w każdej probówce wiórki magnezowe uległy całkowitemu roztworzeniu i powstały klarowne, bezbarwne roztwory, ale w jednej z probówek reakcja przebiegła szybciej.
Napisz w formie jonowej skróconej równanie reakcji, która zaszła podczas opisanego doświadczenia w obu probówkach. Wskaż numer probówki (I albo II), w której wiórki magnezowe roztworzyły się szybciej. Równanie reakcji: Wiórki magnezowe roztworzyły się szybciej w probówce numer